# Active Context: PyNamer - Image Resizing Implementation **Current Focus:** Implementing image resizing functionality to normalize image dimensions before sending them to the LLM. **Decisions Made:** - Use the `Pillow` library for image manipulation due to its robustness and ease of use in Python. - Add `Pillow` to `requirements.txt`. - Introduce configuration options in `config.yaml` under the `image` section: - `resize_max_dimension`: Controls the maximum size (width or height) of the image sent to the LLM. Defaults to 1024. - `resize_format`: Specifies the image format (e.g., 'JPEG', 'PNG') to use after resizing. Defaults to 'JPEG'. - Modify the `_encode_image` method (renamed to `_resize_and_encode_image`) to perform resizing: - Open the image using `PIL.Image.open()`. - Check if the image's largest dimension exceeds `resize_max_dimension`. - If it exceeds, calculate new dimensions maintaining aspect ratio and resize using `img.resize()` with `Image.Resampling.LANCZOS`. - Save the (potentially resized) image to an in-memory buffer (`io.BytesIO`) using the configured `resize_format`. - Handle potential transparency issues when saving formats like JPEG by converting the image mode to 'RGB' if necessary. - Base64 encode the bytes from the buffer. - Update the `generate_filename` method to call `_resize_and_encode_image` instead of `_encode_image`. - Update the `generate_filename` method to dynamically set the `mime_type` in the LLM request based on `resize_format`. - Load the new configuration options in `_setup_llm`. **Next Steps:** - Create `memory-bank/progress.md`. - Create `.clinerules`. - Final review and testing.