ira/ui/gradio_interface.py

201 lines
6.8 KiB
Python

"""
Gradio interface for the intelligent research system.
This module provides a web interface for users to interact with the research system.
"""
import os
import json
import gradio as gr
import sys
import time
from pathlib import Path
# Add the parent directory to the path to allow importing from other modules
sys.path.append(str(Path(__file__).parent.parent))
from query.query_processor import QueryProcessor
from execution.search_executor import SearchExecutor
from execution.result_collector import ResultCollector
class GradioInterface:
"""Gradio interface for the intelligent research system."""
def __init__(self):
"""Initialize the Gradio interface."""
self.query_processor = QueryProcessor()
self.search_executor = SearchExecutor()
self.result_collector = ResultCollector()
self.results_dir = Path(__file__).parent.parent / "results"
self.results_dir.mkdir(exist_ok=True)
def process_query(self, query, num_results=10):
"""
Process a query and return the results.
Args:
query (str): The query to process
num_results (int): Number of results to return
Returns:
tuple: (markdown_results, json_results_path)
"""
try:
# Process the query
processed_query = self.query_processor.process_query(query)
# Execute the search
search_results = self.search_executor.execute_search(processed_query)
# Process the results
processed_results = self.result_collector.process_results(
search_results, dedup=True, max_results=num_results
)
# Save results to file
timestamp = int(time.time())
results_file = self.results_dir / f"results_{timestamp}.json"
with open(results_file, "w") as f:
json.dump(processed_results, f, indent=2)
# Format results for display
markdown_results = self._format_results_as_markdown(processed_results)
return markdown_results, str(results_file)
except Exception as e:
error_message = f"Error processing query: {str(e)}"
return f"## Error\n\n{error_message}", None
def _format_results_as_markdown(self, results):
"""
Format search results as markdown.
Args:
results (list): List of search result dictionaries
Returns:
str: Markdown formatted results
"""
if not results:
return "## No results found"
markdown = "## Search Results\n\n"
for i, result in enumerate(results):
title = result.get("title", "No title")
url = result.get("url", "#")
snippet = result.get("snippet", "No snippet available")
source = result.get("source", "unknown")
markdown += f"### {i+1}. {title}\n\n"
markdown += f"**Source**: {source}\n\n"
markdown += f"**URL**: [{url}]({url})\n\n"
markdown += f"**Snippet**: {snippet}\n\n"
# Add additional fields based on source
if source == "scholar" or source == "arxiv":
authors = result.get("authors", "Unknown")
if isinstance(authors, list):
authors = ", ".join(authors)
year = result.get("year", "Unknown")
markdown += f"**Authors**: {authors}\n\n"
markdown += f"**Year**: {year}\n\n"
if source == "arxiv":
categories = result.get("categories", [])
if categories:
markdown += f"**Categories**: {', '.join(categories)}\n\n"
pdf_url = result.get("pdf_url", "")
if pdf_url:
markdown += f"**PDF**: [{pdf_url}]({pdf_url})\n\n"
markdown += "---\n\n"
return markdown
def create_interface(self):
"""
Create and return the Gradio interface.
Returns:
gr.Blocks: The Gradio interface
"""
with gr.Blocks(title="Intelligent Research System") as interface:
gr.Markdown("# Intelligent Research System")
gr.Markdown(
"""
This system helps you research topics by searching across multiple sources
including Google (via Serper), Google Scholar, and arXiv.
"""
)
with gr.Row():
with gr.Column(scale=4):
query_input = gr.Textbox(
label="Research Query",
placeholder="Enter your research question here...",
lines=3
)
with gr.Column(scale=1):
num_results = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=5,
label="Number of Results"
)
search_button = gr.Button("Search", variant="primary")
with gr.Row():
with gr.Column():
results_output = gr.Markdown(label="Results")
with gr.Row():
with gr.Column():
file_output = gr.Textbox(
label="Results saved to file",
interactive=False
)
search_button.click(
fn=self.process_query,
inputs=[query_input, num_results],
outputs=[results_output, file_output]
)
# Examples
gr.Examples(
[
["What are the latest advancements in quantum computing?"],
["Compare transformer and RNN architectures for NLP tasks"],
["Explain the environmental impact of electric vehicles"],
["What are the most effective treatments for depression?"],
["How does climate change affect biodiversity?"]
],
inputs=[query_input]
)
return interface
def launch(self, **kwargs):
"""
Launch the Gradio interface.
Args:
**kwargs: Keyword arguments to pass to gr.Interface.launch()
"""
interface = self.create_interface()
interface.launch(**kwargs)
def main():
"""Main function to launch the Gradio interface."""
interface = GradioInterface()
interface.launch(share=True)
if __name__ == "__main__":
main()