201 lines
6.8 KiB
Python
201 lines
6.8 KiB
Python
"""
|
|
Gradio interface for the intelligent research system.
|
|
This module provides a web interface for users to interact with the research system.
|
|
"""
|
|
|
|
import os
|
|
import json
|
|
import gradio as gr
|
|
import sys
|
|
import time
|
|
from pathlib import Path
|
|
|
|
# Add the parent directory to the path to allow importing from other modules
|
|
sys.path.append(str(Path(__file__).parent.parent))
|
|
|
|
from query.query_processor import QueryProcessor
|
|
from execution.search_executor import SearchExecutor
|
|
from execution.result_collector import ResultCollector
|
|
|
|
|
|
class GradioInterface:
|
|
"""Gradio interface for the intelligent research system."""
|
|
|
|
def __init__(self):
|
|
"""Initialize the Gradio interface."""
|
|
self.query_processor = QueryProcessor()
|
|
self.search_executor = SearchExecutor()
|
|
self.result_collector = ResultCollector()
|
|
self.results_dir = Path(__file__).parent.parent / "results"
|
|
self.results_dir.mkdir(exist_ok=True)
|
|
|
|
def process_query(self, query, num_results=10):
|
|
"""
|
|
Process a query and return the results.
|
|
|
|
Args:
|
|
query (str): The query to process
|
|
num_results (int): Number of results to return
|
|
|
|
Returns:
|
|
tuple: (markdown_results, json_results_path)
|
|
"""
|
|
try:
|
|
# Process the query
|
|
processed_query = self.query_processor.process_query(query)
|
|
|
|
# Execute the search
|
|
search_results = self.search_executor.execute_search(processed_query)
|
|
|
|
# Process the results
|
|
processed_results = self.result_collector.process_results(
|
|
search_results, dedup=True, max_results=num_results
|
|
)
|
|
|
|
# Save results to file
|
|
timestamp = int(time.time())
|
|
results_file = self.results_dir / f"results_{timestamp}.json"
|
|
with open(results_file, "w") as f:
|
|
json.dump(processed_results, f, indent=2)
|
|
|
|
# Format results for display
|
|
markdown_results = self._format_results_as_markdown(processed_results)
|
|
|
|
return markdown_results, str(results_file)
|
|
|
|
except Exception as e:
|
|
error_message = f"Error processing query: {str(e)}"
|
|
return f"## Error\n\n{error_message}", None
|
|
|
|
def _format_results_as_markdown(self, results):
|
|
"""
|
|
Format search results as markdown.
|
|
|
|
Args:
|
|
results (list): List of search result dictionaries
|
|
|
|
Returns:
|
|
str: Markdown formatted results
|
|
"""
|
|
if not results:
|
|
return "## No results found"
|
|
|
|
markdown = "## Search Results\n\n"
|
|
|
|
for i, result in enumerate(results):
|
|
title = result.get("title", "No title")
|
|
url = result.get("url", "#")
|
|
snippet = result.get("snippet", "No snippet available")
|
|
source = result.get("source", "unknown")
|
|
|
|
markdown += f"### {i+1}. {title}\n\n"
|
|
markdown += f"**Source**: {source}\n\n"
|
|
markdown += f"**URL**: [{url}]({url})\n\n"
|
|
markdown += f"**Snippet**: {snippet}\n\n"
|
|
|
|
# Add additional fields based on source
|
|
if source == "scholar" or source == "arxiv":
|
|
authors = result.get("authors", "Unknown")
|
|
if isinstance(authors, list):
|
|
authors = ", ".join(authors)
|
|
year = result.get("year", "Unknown")
|
|
markdown += f"**Authors**: {authors}\n\n"
|
|
markdown += f"**Year**: {year}\n\n"
|
|
|
|
if source == "arxiv":
|
|
categories = result.get("categories", [])
|
|
if categories:
|
|
markdown += f"**Categories**: {', '.join(categories)}\n\n"
|
|
|
|
pdf_url = result.get("pdf_url", "")
|
|
if pdf_url:
|
|
markdown += f"**PDF**: [{pdf_url}]({pdf_url})\n\n"
|
|
|
|
markdown += "---\n\n"
|
|
|
|
return markdown
|
|
|
|
def create_interface(self):
|
|
"""
|
|
Create and return the Gradio interface.
|
|
|
|
Returns:
|
|
gr.Blocks: The Gradio interface
|
|
"""
|
|
with gr.Blocks(title="Intelligent Research System") as interface:
|
|
gr.Markdown("# Intelligent Research System")
|
|
gr.Markdown(
|
|
"""
|
|
This system helps you research topics by searching across multiple sources
|
|
including Google (via Serper), Google Scholar, and arXiv.
|
|
"""
|
|
)
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=4):
|
|
query_input = gr.Textbox(
|
|
label="Research Query",
|
|
placeholder="Enter your research question here...",
|
|
lines=3
|
|
)
|
|
with gr.Column(scale=1):
|
|
num_results = gr.Slider(
|
|
minimum=5,
|
|
maximum=30,
|
|
value=10,
|
|
step=5,
|
|
label="Number of Results"
|
|
)
|
|
search_button = gr.Button("Search", variant="primary")
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
results_output = gr.Markdown(label="Results")
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
file_output = gr.Textbox(
|
|
label="Results saved to file",
|
|
interactive=False
|
|
)
|
|
|
|
search_button.click(
|
|
fn=self.process_query,
|
|
inputs=[query_input, num_results],
|
|
outputs=[results_output, file_output]
|
|
)
|
|
|
|
# Examples
|
|
gr.Examples(
|
|
[
|
|
["What are the latest advancements in quantum computing?"],
|
|
["Compare transformer and RNN architectures for NLP tasks"],
|
|
["Explain the environmental impact of electric vehicles"],
|
|
["What are the most effective treatments for depression?"],
|
|
["How does climate change affect biodiversity?"]
|
|
],
|
|
inputs=[query_input]
|
|
)
|
|
|
|
return interface
|
|
|
|
def launch(self, **kwargs):
|
|
"""
|
|
Launch the Gradio interface.
|
|
|
|
Args:
|
|
**kwargs: Keyword arguments to pass to gr.Interface.launch()
|
|
"""
|
|
interface = self.create_interface()
|
|
interface.launch(**kwargs)
|
|
|
|
|
|
def main():
|
|
"""Main function to launch the Gradio interface."""
|
|
interface = GradioInterface()
|
|
interface.launch(share=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|