ira/report/report_generator.py

329 lines
12 KiB
Python

"""
Report generator module for the intelligent research system.
This module provides functionality to generate reports from search results
by scraping documents, storing them in a database, and synthesizing them
into a comprehensive report.
"""
import os
import asyncio
import logging
from typing import Dict, List, Any, Optional, Tuple, Union
from report.database.db_manager import get_db_manager, initialize_database
from report.document_scraper import get_document_scraper
from report.document_processor import get_document_processor
from report.report_synthesis import get_report_synthesizer
from report.progressive_report_synthesis import get_progressive_report_synthesizer
from report.report_detail_levels import get_report_detail_level_manager, DetailLevel
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class ReportGenerator:
"""
Report generator for the intelligent research system.
This class provides methods to generate reports from search results
by scraping documents, storing them in a database, and synthesizing them
into a comprehensive report.
"""
def __init__(self):
"""Initialize the report generator."""
self.db_manager = get_db_manager()
self.document_scraper = get_document_scraper()
self.document_processor = get_document_processor()
self.report_synthesizer = get_report_synthesizer()
self.progressive_report_synthesizer = get_progressive_report_synthesizer()
self.detail_level_manager = get_report_detail_level_manager()
self.detail_level = "standard" # Default detail level
self.model_name = None # Will use default model based on detail level
async def initialize(self):
"""Initialize the report generator by setting up the database."""
await initialize_database()
logger.info("Report generator initialized")
def set_detail_level(self, detail_level: str) -> None:
"""
Set the detail level for report generation.
Args:
detail_level: Detail level (brief, standard, detailed, comprehensive)
"""
try:
# Validate detail level
config = self.detail_level_manager.get_detail_level_config(detail_level)
self.detail_level = detail_level
# Update model if needed
model = config.get("model")
if model and model != self.model_name:
self.model_name = model
self.report_synthesizer = get_report_synthesizer(model)
self.progressive_report_synthesizer = get_progressive_report_synthesizer(model)
logger.info(f"Detail level set to {detail_level} with model {model}")
except ValueError as e:
logger.error(f"Error setting detail level: {e}")
raise
def get_detail_level_config(self) -> Dict[str, Any]:
"""
Get the current detail level configuration.
Returns:
Dictionary of configuration parameters for the current detail level
"""
return self.detail_level_manager.get_detail_level_config(self.detail_level)
def get_available_detail_levels(self) -> List[Tuple[str, str]]:
"""
Get a list of available detail levels with descriptions.
Returns:
List of tuples containing detail level and description
"""
return self.detail_level_manager.get_available_detail_levels()
async def process_search_results(self, search_results: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Process search results by scraping the URLs and storing them in the database.
Args:
search_results: List of search results, each containing at least a 'url' field
Returns:
List of processed documents
"""
# Extract URLs from search results
urls = [result.get('url') for result in search_results if result.get('url')]
# Extract relevance scores if available
relevance_scores = {}
for result in search_results:
if result.get('url') and result.get('score') is not None:
relevance_scores[result.get('url')] = result.get('score')
# Scrape URLs and store in database
documents = await self.document_scraper.scrape_urls(urls)
# Log results
logger.info(f"Processed {len(documents)} documents out of {len(urls)} URLs")
return documents, relevance_scores
async def get_document_by_url(self, url: str) -> Optional[Dict[str, Any]]:
"""
Get a document by its URL.
Args:
url: URL of the document
Returns:
Document as a dictionary, or None if not found
"""
return await self.db_manager.get_document_by_url(url)
async def search_documents(self, query: str, limit: int = 10) -> List[Dict[str, Any]]:
"""
Search for documents in the database.
Args:
query: Search query
limit: Maximum number of results to return
Returns:
List of matching documents
"""
return await self.db_manager.search_documents(query, limit)
async def prepare_documents_for_report(self,
search_results: List[Dict[str, Any]],
token_budget: Optional[int] = None,
chunk_size: Optional[int] = None,
overlap_size: Optional[int] = None) -> List[Dict[str, Any]]:
"""
Prepare documents for report generation by processing search results,
prioritizing documents, and chunking them to fit within token budget.
Args:
search_results: List of search results
token_budget: Maximum number of tokens to use
chunk_size: Maximum number of tokens per chunk
overlap_size: Number of tokens to overlap between chunks
Returns:
List of selected document chunks
"""
# Get configuration from detail level if not specified
config = self.get_detail_level_config()
if token_budget is None:
token_budget = config.get("token_budget")
if chunk_size is None:
chunk_size = config.get("chunk_size", 1000)
if overlap_size is None:
overlap_size = config.get("overlap_size", 100)
logger.info(f"Preparing documents with token_budget={token_budget}, chunk_size={chunk_size}, overlap_size={overlap_size}")
# Process search results to get documents and relevance scores
documents, relevance_scores = await self.process_search_results(search_results)
# Prioritize and chunk documents
selected_chunks = self.document_processor.process_documents_for_report(
documents,
relevance_scores,
token_budget,
chunk_size,
overlap_size
)
return selected_chunks
async def generate_report(self,
search_results: List[Dict[str, Any]],
query: str,
token_budget: Optional[int] = None,
chunk_size: Optional[int] = None,
overlap_size: Optional[int] = None,
detail_level: Optional[str] = None) -> str:
"""
Generate a report from search results.
Args:
search_results: List of search results
query: Original search query
token_budget: Maximum number of tokens to use
chunk_size: Maximum number of tokens per chunk
overlap_size: Number of tokens to overlap between chunks
detail_level: Level of detail for the report (brief, standard, detailed, comprehensive)
Returns:
Generated report as a string
"""
# Set detail level if specified
if detail_level:
self.set_detail_level(detail_level)
# Prepare documents for report
selected_chunks = await self.prepare_documents_for_report(
search_results,
token_budget,
chunk_size,
overlap_size
)
# Choose the appropriate synthesizer based on detail level
if self.detail_level.lower() == "comprehensive":
# Use progressive report synthesizer for comprehensive detail level
logger.info(f"Using progressive report synthesizer for {self.detail_level} detail level")
report = await self.progressive_report_synthesizer.synthesize_report(
selected_chunks,
query,
detail_level=self.detail_level
)
else:
# Use standard report synthesizer for other detail levels
logger.info(f"Using standard report synthesizer for {self.detail_level} detail level")
report = await self.report_synthesizer.synthesize_report(
selected_chunks,
query,
detail_level=self.detail_level
)
return report
# Create a singleton instance for global use
report_generator = ReportGenerator()
async def initialize_report_generator():
"""Initialize the report generator."""
await report_generator.initialize()
def get_report_generator() -> ReportGenerator:
"""
Get the global report generator instance.
Returns:
ReportGenerator instance
"""
return report_generator
async def test_report_generator(use_mock: bool = False):
"""
Test the report generator with sample search results.
Args:
use_mock: If True, use mock data instead of making actual API calls
"""
# Initialize the report generator
await initialize_report_generator()
# Get document scraper with mock option
document_scraper = get_document_scraper(use_mock=use_mock)
# Sample search results with real, accessible URLs
search_results = [
{
'title': 'Python Documentation',
'url': 'https://docs.python.org/3/tutorial/index.html',
'snippet': 'The Python Tutorial.',
'score': 0.95
},
{
'title': 'Python Requests Library',
'url': 'https://requests.readthedocs.io/en/latest/',
'snippet': 'Requests is an elegant and simple HTTP library for Python.',
'score': 0.85
},
{
'title': 'Real Python',
'url': 'https://realpython.com/',
'snippet': 'Python tutorials for developers of all skill levels.',
'score': 0.75
}
]
try:
# Process search results
documents, relevance_scores = await report_generator.process_search_results(search_results)
# Print documents
print(f"Processed {len(documents)} documents")
for doc in documents:
print(f"Document: {doc.get('title')} ({doc.get('url')})")
print(f"Token count: {doc.get('token_count')}")
content_preview = doc.get('content', '')[:100] + '...' if doc.get('content') else 'No content'
print(f"Content snippet: {content_preview}")
print()
# Generate report
report = await report_generator.generate_report(search_results, "Python programming")
# Print report
print("Generated Report:")
print(report)
except Exception as e:
logger.error(f"Error during report generation test: {str(e)}")
import traceback
traceback.print_exc()
# Run test if this module is executed directly
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Test the report generator')
parser.add_argument('--mock', action='store_true', help='Use mock data instead of making actual API calls')
args = parser.parse_args()
print(f"Running test with {'mock data' if args.mock else 'real data'}")
asyncio.run(test_report_generator(use_mock=args.mock))