ira/tests/report/test_all_detail_levels.py

164 lines
6.5 KiB
Python

import sys
import os
import asyncio
import argparse
from datetime import datetime
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from report.report_synthesis import ReportSynthesizer
from report.report_templates import QueryType, DetailLevel
async def generate_report(query_type, detail_level, query, chunks):
"""Generate a report with the specified parameters."""
synthesizer = ReportSynthesizer()
print(f"\n{'='*80}")
print(f"Generating {detail_level} report with {query_type} query type")
print(f"{'='*80}")
# Convert string values to enum objects
query_type_enum = QueryType(query_type)
detail_level_enum = DetailLevel(detail_level)
report = await synthesizer.synthesize_report(
query_type=query_type_enum.value,
detail_level=detail_level_enum.value,
query=query,
chunks=chunks
)
# Save the report to a file
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"tests/report/{query_type}_{detail_level}_report_{timestamp}.md"
with open(filename, 'w', encoding='utf-8') as f:
f.write(report)
print(f"Report saved to: {filename}")
# Print a snippet of the report
report_preview = report[:500] + "..." if len(report) > 500 else report
print(f"\nReport Preview:\n")
print(report_preview)
return report
async def main():
parser = argparse.ArgumentParser(description='Test report generation with different detail levels')
parser.add_argument('--query-type', choices=['factual', 'exploratory', 'comparative', 'code'], default='factual',
help='Query type to test (default: factual)')
parser.add_argument('--detail-level', choices=['brief', 'standard', 'detailed', 'comprehensive'], default=None,
help='Detail level to test (default: test all)')
args = parser.parse_args()
# Test data
queries = {
'factual': "What is the capital of France?",
'exploratory': "How do electric vehicles impact the environment?",
'comparative': "Compare solar and wind energy technologies.",
'code': "How to implement a binary search tree in Python?"
}
chunks = {
'factual': [
{
'content': 'Paris is the capital of France. It is located in the north-central part of the country.',
'source': 'Wikipedia',
'url': 'https://en.wikipedia.org/wiki/Paris'
}
],
'exploratory': [
{
'content': 'Electric vehicles produce zero direct emissions, which improves air quality in urban areas.',
'source': 'EPA',
'url': 'https://www.epa.gov/greenvehicles/electric-vehicles'
},
{
'content': 'The environmental impact of electric vehicles depends on how the electricity is generated. Renewable sources make EVs more environmentally friendly.',
'source': 'Energy.gov',
'url': 'https://www.energy.gov/eere/electricvehicles/electric-vehicle-benefits'
}
],
'comparative': [
{
'content': 'Solar energy is generated by converting sunlight into electricity using photovoltaic cells or concentrated solar power.',
'source': 'National Renewable Energy Laboratory',
'url': 'https://www.nrel.gov/research/re-solar.html'
},
{
'content': 'Wind energy is generated by using wind turbines to create mechanical power that can be converted into electricity.',
'source': 'Department of Energy',
'url': 'https://www.energy.gov/eere/wind/how-do-wind-turbines-work'
},
{
'content': 'Solar energy works best in sunny areas, while wind energy is more effective in windy regions. Both have different land use requirements.',
'source': 'Renewable Energy World',
'url': 'https://www.renewableenergyworld.com/solar/solar-vs-wind/'
}
],
'code': [
{
'content': 'A Binary Search Tree (BST) is a node-based binary tree data structure which has the following properties: The left subtree of a node contains only nodes with keys lesser than the node\'s key. The right subtree of a node contains only nodes with keys greater than the node\'s key.',
'source': 'GeeksforGeeks',
'url': 'https://www.geeksforgeeks.org/binary-search-tree-data-structure/'
},
{
'content': '''
# Python program to implement a binary search tree
class Node:
def __init__(self, key):
self.left = None
self.right = None
self.val = key
# A utility function to insert a new node with the given key
def insert(root, key):
if root is None:
return Node(key)
else:
if root.val == key:
return root
elif root.val < key:
root.right = insert(root.right, key)
else:
root.left = insert(root.left, key)
return root
# A utility function to search a given key in BST
def search(root, key):
# Base Cases: root is null or key is present at root
if root is None or root.val == key:
return root
# Key is greater than root's key
if root.val < key:
return search(root.right, key)
# Key is smaller than root's key
return search(root.left, key)
''',
'source': 'GitHub',
'url': 'https://github.com/example/bst-implementation'
},
{
'content': 'The time complexity of operations on a binary search tree is O(h) where h is the height of the tree. In the worst case, the height can be O(n) (when the tree becomes a linked list), but on average it is O(log n) for a balanced tree.',
'source': 'Algorithm Textbook',
'url': 'https://example.com/algorithms/bst'
}
]
}
# Get the query type to test
query_type = args.query_type
query = queries[query_type]
test_chunks = chunks[query_type]
# Test all detail levels or just the specified one
detail_levels = ['brief', 'standard', 'detailed', 'comprehensive'] if args.detail_level is None else [args.detail_level]
for detail_level in detail_levels:
await generate_report(query_type, detail_level, query, test_chunks)
if __name__ == "__main__":
asyncio.run(main())