164 lines
6.5 KiB
Python
164 lines
6.5 KiB
Python
import sys
|
|
import os
|
|
import asyncio
|
|
import argparse
|
|
from datetime import datetime
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
|
from report.report_synthesis import ReportSynthesizer
|
|
from report.report_templates import QueryType, DetailLevel
|
|
|
|
async def generate_report(query_type, detail_level, query, chunks):
|
|
"""Generate a report with the specified parameters."""
|
|
synthesizer = ReportSynthesizer()
|
|
|
|
print(f"\n{'='*80}")
|
|
print(f"Generating {detail_level} report with {query_type} query type")
|
|
print(f"{'='*80}")
|
|
|
|
# Convert string values to enum objects
|
|
query_type_enum = QueryType(query_type)
|
|
detail_level_enum = DetailLevel(detail_level)
|
|
|
|
report = await synthesizer.synthesize_report(
|
|
query_type=query_type_enum.value,
|
|
detail_level=detail_level_enum.value,
|
|
query=query,
|
|
chunks=chunks
|
|
)
|
|
|
|
# Save the report to a file
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
filename = f"tests/report/{query_type}_{detail_level}_report_{timestamp}.md"
|
|
with open(filename, 'w', encoding='utf-8') as f:
|
|
f.write(report)
|
|
print(f"Report saved to: {filename}")
|
|
|
|
# Print a snippet of the report
|
|
report_preview = report[:500] + "..." if len(report) > 500 else report
|
|
print(f"\nReport Preview:\n")
|
|
print(report_preview)
|
|
|
|
return report
|
|
|
|
async def main():
|
|
parser = argparse.ArgumentParser(description='Test report generation with different detail levels')
|
|
parser.add_argument('--query-type', choices=['factual', 'exploratory', 'comparative', 'code'], default='factual',
|
|
help='Query type to test (default: factual)')
|
|
parser.add_argument('--detail-level', choices=['brief', 'standard', 'detailed', 'comprehensive'], default=None,
|
|
help='Detail level to test (default: test all)')
|
|
args = parser.parse_args()
|
|
|
|
# Test data
|
|
queries = {
|
|
'factual': "What is the capital of France?",
|
|
'exploratory': "How do electric vehicles impact the environment?",
|
|
'comparative': "Compare solar and wind energy technologies.",
|
|
'code': "How to implement a binary search tree in Python?"
|
|
}
|
|
|
|
chunks = {
|
|
'factual': [
|
|
{
|
|
'content': 'Paris is the capital of France. It is located in the north-central part of the country.',
|
|
'source': 'Wikipedia',
|
|
'url': 'https://en.wikipedia.org/wiki/Paris'
|
|
}
|
|
],
|
|
'exploratory': [
|
|
{
|
|
'content': 'Electric vehicles produce zero direct emissions, which improves air quality in urban areas.',
|
|
'source': 'EPA',
|
|
'url': 'https://www.epa.gov/greenvehicles/electric-vehicles'
|
|
},
|
|
{
|
|
'content': 'The environmental impact of electric vehicles depends on how the electricity is generated. Renewable sources make EVs more environmentally friendly.',
|
|
'source': 'Energy.gov',
|
|
'url': 'https://www.energy.gov/eere/electricvehicles/electric-vehicle-benefits'
|
|
}
|
|
],
|
|
'comparative': [
|
|
{
|
|
'content': 'Solar energy is generated by converting sunlight into electricity using photovoltaic cells or concentrated solar power.',
|
|
'source': 'National Renewable Energy Laboratory',
|
|
'url': 'https://www.nrel.gov/research/re-solar.html'
|
|
},
|
|
{
|
|
'content': 'Wind energy is generated by using wind turbines to create mechanical power that can be converted into electricity.',
|
|
'source': 'Department of Energy',
|
|
'url': 'https://www.energy.gov/eere/wind/how-do-wind-turbines-work'
|
|
},
|
|
{
|
|
'content': 'Solar energy works best in sunny areas, while wind energy is more effective in windy regions. Both have different land use requirements.',
|
|
'source': 'Renewable Energy World',
|
|
'url': 'https://www.renewableenergyworld.com/solar/solar-vs-wind/'
|
|
}
|
|
],
|
|
'code': [
|
|
{
|
|
'content': 'A Binary Search Tree (BST) is a node-based binary tree data structure which has the following properties: The left subtree of a node contains only nodes with keys lesser than the node\'s key. The right subtree of a node contains only nodes with keys greater than the node\'s key.',
|
|
'source': 'GeeksforGeeks',
|
|
'url': 'https://www.geeksforgeeks.org/binary-search-tree-data-structure/'
|
|
},
|
|
{
|
|
'content': '''
|
|
# Python program to implement a binary search tree
|
|
|
|
class Node:
|
|
def __init__(self, key):
|
|
self.left = None
|
|
self.right = None
|
|
self.val = key
|
|
|
|
# A utility function to insert a new node with the given key
|
|
def insert(root, key):
|
|
if root is None:
|
|
return Node(key)
|
|
else:
|
|
if root.val == key:
|
|
return root
|
|
elif root.val < key:
|
|
root.right = insert(root.right, key)
|
|
else:
|
|
root.left = insert(root.left, key)
|
|
return root
|
|
|
|
# A utility function to search a given key in BST
|
|
def search(root, key):
|
|
# Base Cases: root is null or key is present at root
|
|
if root is None or root.val == key:
|
|
return root
|
|
|
|
# Key is greater than root's key
|
|
if root.val < key:
|
|
return search(root.right, key)
|
|
|
|
# Key is smaller than root's key
|
|
return search(root.left, key)
|
|
''',
|
|
'source': 'GitHub',
|
|
'url': 'https://github.com/example/bst-implementation'
|
|
},
|
|
{
|
|
'content': 'The time complexity of operations on a binary search tree is O(h) where h is the height of the tree. In the worst case, the height can be O(n) (when the tree becomes a linked list), but on average it is O(log n) for a balanced tree.',
|
|
'source': 'Algorithm Textbook',
|
|
'url': 'https://example.com/algorithms/bst'
|
|
}
|
|
]
|
|
}
|
|
|
|
# Get the query type to test
|
|
query_type = args.query_type
|
|
query = queries[query_type]
|
|
test_chunks = chunks[query_type]
|
|
|
|
# Test all detail levels or just the specified one
|
|
detail_levels = ['brief', 'standard', 'detailed', 'comprehensive'] if args.detail_level is None else [args.detail_level]
|
|
|
|
for detail_level in detail_levels:
|
|
await generate_report(query_type, detail_level, query, test_chunks)
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main())
|