ira/ranking/jina_reranker.py

190 lines
7.3 KiB
Python

"""
Jina AI Reranker module for the intelligent research system.
This module provides functionality to rerank documents based on their relevance
to a query using Jina AI's Reranker API.
"""
import os
import json
import requests
from typing import List, Dict, Any, Optional, Union
from config.config import get_config
class JinaReranker:
"""
Document reranker using Jina AI's Reranker API.
This class provides methods to rerank documents based on their relevance
to a query, improving the quality of search results.
"""
def __init__(self):
"""Initialize the Jina Reranker."""
self.config = get_config()
self.api_key = self._get_api_key()
self.endpoint = "https://api.jina.ai/v1/rerank"
# Get reranker configuration
self.reranker_config = self.config.config_data.get('jina', {}).get('reranker', {})
self.model = self.reranker_config.get('model', 'jina-reranker-v2-base-multilingual')
self.default_top_n = self.reranker_config.get('top_n', 10)
def _get_api_key(self) -> str:
"""
Get the Jina AI API key.
Returns:
The API key as a string
Raises:
ValueError: If the API key is not found
"""
try:
return self.config.get_api_key('jina')
except ValueError as e:
raise ValueError(f"Jina AI API key not found. {str(e)}")
def rerank(self, query: str, documents: List[str],
top_n: Optional[int] = None) -> List[Dict[str, Any]]:
"""
Rerank documents based on their relevance to the query.
Args:
query: The query to rank documents against
documents: List of document strings to rerank
top_n: Number of top results to return (optional)
Returns:
List of dictionaries containing reranked documents with scores and indices
Raises:
Exception: If there's an error calling the Reranker API
"""
if not documents:
return []
# Use default top_n if not specified
if top_n is None:
top_n = min(self.default_top_n, len(documents))
else:
top_n = min(top_n, len(documents))
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
"Accept": "application/json"
}
# The correct format is an array of plain strings, not objects with a "text" field
data = {
"model": self.model,
"query": query,
"documents": documents, # Plain array of strings
"top_n": top_n
}
print(f"Making reranker API call with query: {query[:50]}... and {len(documents)} documents")
print(f"Request payload structure: model, query, documents (array of {len(documents)} strings), top_n={top_n}")
try:
response = requests.post(self.endpoint, headers=headers, json=data)
print(f"Reranker API response status: {response.status_code}")
if response.status_code != 200:
print(f"Reranker API error: {response.text}")
return []
response.raise_for_status() # Raise exception for HTTP errors
result = response.json()
print(f"Reranker API response structure: {list(result.keys())}")
# Process and return the reranked results
reranked_results = []
# Check for the specific response structure from the API
if "results" in result and isinstance(result["results"], list):
results_list = result["results"]
for item in results_list:
if isinstance(item, dict) and "index" in item and "relevance_score" in item:
reranked_results.append({
'index': item.get('index'),
'score': item.get('relevance_score'),
'document': documents[item.get('index')] if item.get('index') < len(documents) else None
})
# Handle newer Jina API format with document.text
elif isinstance(item, dict) and "index" in item and "document" in item and "relevance_score" in item:
reranked_results.append({
'index': item.get('index'),
'score': item.get('relevance_score'),
'document': documents[item.get('index')] if item.get('index') < len(documents) else None
})
# Fallback for older response structures with "data" field
elif "data" in result and isinstance(result["data"], list):
data_list = result["data"]
for item in data_list:
if isinstance(item, dict) and "index" in item and "relevance_score" in item:
reranked_results.append({
'index': item.get('index'),
'score': item.get('relevance_score'),
'document': documents[item.get('index')] if item.get('index') < len(documents) else None
})
print(f"Processed reranker results: {len(reranked_results)} items")
return reranked_results
except Exception as e:
print(f"Error calling Jina Reranker API: {str(e)}")
# Return original documents with default ordering in case of error
return [{'index': i, 'score': 1.0, 'document': doc} for i, doc in enumerate(documents[:top_n])]
def rerank_with_metadata(self, query: str, documents: List[Dict[str, Any]],
document_key: str = 'content',
top_n: Optional[int] = None) -> List[Dict[str, Any]]:
"""
Rerank documents with metadata based on their relevance to the query.
Args:
query: The query to rank documents against
documents: List of document dictionaries containing content and metadata
document_key: The key in the document dictionaries that contains the text content
top_n: Number of top results to return (optional)
Returns:
List of dictionaries containing reranked documents with scores, indices, and original metadata
Raises:
Exception: If there's an error calling the Reranker API
"""
if not documents:
return []
# Extract document contents
doc_contents = [doc.get(document_key, "") for doc in documents]
# Rerank the document contents
reranked_results = self.rerank(query, doc_contents, top_n)
# Add original metadata to the results
for result in reranked_results:
result['metadata'] = documents[result['index']]
return reranked_results
# Create a singleton instance for global use
jina_reranker = JinaReranker()
def get_jina_reranker() -> JinaReranker:
"""
Get the global Jina Reranker instance.
Returns:
JinaReranker instance
"""
return jina_reranker