#!/usr/bin/env python3 """ Comprehensive test script for the query processor module. This script tests all the key functionality of the query processor with the Groq models. """ import os import json import time from datetime import datetime from typing import Dict, Any, List from query.query_processor import QueryProcessor, get_query_processor from query.llm_interface import LLMInterface, get_llm_interface from config.config import get_config # Create a config.yaml file if it doesn't exist config_dir = os.path.join(os.path.dirname(__file__), "config") config_file = os.path.join(config_dir, "config.yaml") if not os.path.exists(config_file): example_file = os.path.join(config_dir, "config.yaml.example") if os.path.exists(example_file): with open(example_file, "r") as f: example_content = f.read() with open(config_file, "w") as f: f.write(example_content) print(f"Created config.yaml from example file") # Create a global LLM interface with the Groq model groq_interface = get_llm_interface("llama-3.1-8b-instant") print(f"Using model: {groq_interface.model_name}") # Monkey patch the get_llm_interface function to always return our Groq interface import query.llm_interface original_get_llm_interface = query.llm_interface.get_llm_interface def patched_get_llm_interface(*args, **kwargs): return groq_interface query.llm_interface.get_llm_interface = patched_get_llm_interface # Test data TEST_QUERIES = [ # Simple factual queries "What is quantum computing?", "Who invented the internet?", # Complex research queries "What are the latest advancements in renewable energy?", "How does artificial intelligence impact healthcare?", # Comparative queries "Compare machine learning and deep learning", "What are the differences between solar and wind energy?", # Domain-specific queries "Explain the CRISPR-Cas9 gene editing technology", "What are the implications of blockchain for finance?" ] SEARCH_ENGINES = ["google", "bing", "scholar"] def test_enhance_query(query: str) -> str: """ Test the query enhancement functionality. Args: query: The query to enhance Returns: The enhanced query """ print(f"\nTesting Query Enhancement") print(f"Original Query: '{query}'") print("-" * 50) start_time = time.time() enhanced_query = groq_interface.enhance_query(query) end_time = time.time() print(f"Processing time: {end_time - start_time:.2f} seconds") print(f"Enhanced Query: '{enhanced_query}'") print("-" * 50) return enhanced_query def test_classify_query(query: str) -> Dict[str, Any]: """ Test the query classification functionality. Args: query: The query to classify Returns: The classification result """ print(f"\nTesting Query Classification") print(f"Query: '{query}'") print("-" * 50) start_time = time.time() classification = groq_interface.classify_query(query) end_time = time.time() print(f"Processing time: {end_time - start_time:.2f} seconds") print(f"Classification: {json.dumps(classification, indent=2)}") print("-" * 50) return classification def test_process_query(query: str) -> Dict[str, Any]: """ Test the query processing functionality. Args: query: The query to process Returns: The processed query result """ # Get the query processor (which will use our patched LLM interface) processor = get_query_processor() # Process the query print(f"\nTesting Query Processing") print(f"Query: '{query}'") print("-" * 50) start_time = time.time() result = processor.process_query(query) end_time = time.time() # Add timestamp result['timestamp'] = datetime.now().isoformat() # Calculate processing time print(f"Processing time: {end_time - start_time:.2f} seconds") # Print the result in a formatted way print(f"Original Query: {result['original_query']}") print(f"Enhanced Query: {result['enhanced_query']}") print(f"Query Type: {result['type']}") print(f"Query Intent: {result['intent']}") print(f"Entities: {', '.join(result['entities'])}") print("-" * 50) return result def test_generate_search_queries(structured_query: Dict[str, Any], search_engines: List[str]) -> Dict[str, Any]: """ Test the search query generation functionality. Args: structured_query: The structured query to generate search queries for search_engines: List of search engines to generate queries for Returns: The updated structured query with search queries """ # Get the query processor (which will use our patched LLM interface) processor = get_query_processor() # Generate search queries print(f"\nTesting Search Query Generation") print(f"Engines: {', '.join(search_engines)}") print("-" * 50) start_time = time.time() result = processor.generate_search_queries(structured_query, search_engines) end_time = time.time() # Calculate processing time print(f"Processing time: {end_time - start_time:.2f} seconds") # Print the generated search queries for engine, queries in result['search_queries'].items(): print(f"\n{engine.upper()} Queries:") for i, query in enumerate(queries, 1): print(f" {i}. {query}") print("-" * 50) return result def run_comprehensive_tests(): """Run comprehensive tests on the query processor.""" results = [] for i, query in enumerate(TEST_QUERIES, 1): print(f"\n\nTEST {i}: {query}") print("=" * 80) # Test individual components enhanced_query = test_enhance_query(query) classification = test_classify_query(query) # Test the full query processing pipeline structured_query = test_process_query(query) # Test search query generation for a subset of queries if i % 2 == 0: # Only test every other query to save time search_result = test_generate_search_queries(structured_query, SEARCH_ENGINES) structured_query = search_result # Save results results.append({ "query": query, "enhanced_query": enhanced_query, "classification": classification, "structured_query": structured_query }) print("\n" + "=" * 80 + "\n") # Add a delay between tests to avoid rate limiting if i < len(TEST_QUERIES): print(f"Waiting 2 seconds before next test...") time.sleep(2) # Save results to a file output_file = "query_processor_test_results.json" with open(output_file, "w") as f: json.dump(results, f, indent=2) print(f"\nTest results saved to {output_file}") if __name__ == "__main__": run_comprehensive_tests()