#!/usr/bin/env python3 """ Test script for the query processor module. This script tests the query processor with the Groq models. """ import os import json from datetime import datetime from typing import Dict, Any from query.query_processor import QueryProcessor, get_query_processor from query.llm_interface import LLMInterface, get_llm_interface from config.config import get_config # Create a config.yaml file if it doesn't exist config_dir = os.path.join(os.path.dirname(__file__), "config") config_file = os.path.join(config_dir, "config.yaml") if not os.path.exists(config_file): example_file = os.path.join(config_dir, "config.yaml.example") if os.path.exists(example_file): with open(example_file, "r") as f: example_content = f.read() with open(config_file, "w") as f: f.write(example_content) print(f"Created config.yaml from example file") # Force the use of Groq model for testing # First, create a global LLM interface with the Groq model groq_interface = get_llm_interface("llama-3.1-8b-instant") print(f"Using model: {groq_interface.model_name}") # Monkey patch the get_llm_interface function to always return our Groq interface import query.llm_interface original_get_llm_interface = query.llm_interface.get_llm_interface def patched_get_llm_interface(*args, **kwargs): return groq_interface query.llm_interface.get_llm_interface = patched_get_llm_interface def test_process_query(query: str) -> Dict[str, Any]: """ Test the query processing functionality. Args: query: The query to process Returns: The processed query result """ # Get the query processor (which will use our patched LLM interface) processor = get_query_processor() # Process the query print(f"\nProcessing query: '{query}'") print("-" * 50) start_time = datetime.now() result = processor.process_query(query) end_time = datetime.now() # Add timestamp result['timestamp'] = datetime.now().isoformat() # Calculate processing time processing_time = (end_time - start_time).total_seconds() print(f"Processing time: {processing_time:.2f} seconds") # Print the result in a formatted way print("\nProcessed Query Result:") print("-" * 50) print(f"Original Query: {result['original_query']}") print(f"Enhanced Query: {result['enhanced_query']}") print(f"Query Type: {result['type']}") print(f"Query Intent: {result['intent']}") print(f"Entities: {', '.join(result['entities'])}") print("-" * 50) return result def test_generate_search_queries(structured_query: Dict[str, Any], search_engines: list = None) -> Dict[str, Any]: """ Test the search query generation functionality. Args: structured_query: The structured query to generate search queries for search_engines: List of search engines to generate queries for Returns: The updated structured query with search queries """ if search_engines is None: search_engines = ["google", "bing", "scholar"] # Get the query processor (which will use our patched LLM interface) processor = get_query_processor() # Generate search queries print(f"\nGenerating search queries for engines: {', '.join(search_engines)}") print("-" * 50) start_time = datetime.now() result = processor.generate_search_queries(structured_query, search_engines) end_time = datetime.now() # Calculate processing time processing_time = (end_time - start_time).total_seconds() print(f"Processing time: {processing_time:.2f} seconds") # Print the generated search queries print("\nGenerated Search Queries:") print("-" * 50) for engine, queries in result['search_queries'].items(): print(f"\n{engine.upper()} Queries:") for i, query in enumerate(queries, 1): print(f" {i}. {query}") print("-" * 50) return result def main(): """Run the query processor tests.""" # Test queries test_queries = [ "What are the latest advancements in quantum computing?", "Compare renewable energy sources and their efficiency", "Explain the impact of artificial intelligence on healthcare" ] # Process each query for query in test_queries: structured_query = test_process_query(query) # Generate search queries for the processed query test_generate_search_queries(structured_query) print("\n" + "=" * 80 + "\n") if __name__ == "__main__": main()