chatterbox-ui/cbx-audiobook.py

497 lines
22 KiB
Python
Executable File

#!/usr/bin/env python
"""
Chatterbox Audiobook Generator
This script converts a text file into an audiobook using the Chatterbox TTS system.
It parses the text file into manageable chunks, generates audio for each chunk,
and assembles them into a complete audiobook.
"""
import argparse
import asyncio
import gc
import os
import re
import subprocess
import sys
import torch
from pathlib import Path
import uuid
# Import helper to fix Python path
import import_helper
# Import backend services
from backend.app.services.tts_service import TTSService
from backend.app.services.speaker_service import SpeakerManagementService
from backend.app.services.audio_manipulation_service import AudioManipulationService
from backend.app.config import DIALOG_GENERATED_DIR, TTS_TEMP_OUTPUT_DIR
class AudiobookGenerator:
def __init__(self, speaker_id, output_base_name, device="mps",
exaggeration=0.5, cfg_weight=0.5, temperature=0.8,
pause_between_sentences=0.5, pause_between_paragraphs=1.0,
keep_model_loaded=False, cleanup_interval=10, use_subprocess=False):
"""
Initialize the audiobook generator.
Args:
speaker_id: ID of the speaker to use
output_base_name: Base name for output files
device: Device to use for TTS (mps, cuda, cpu)
exaggeration: Controls expressiveness (0.0-1.0)
cfg_weight: Controls alignment with speaker characteristics (0.0-1.0)
temperature: Controls randomness in generation (0.0-1.0)
pause_between_sentences: Pause duration between sentences in seconds
pause_between_paragraphs: Pause duration between paragraphs in seconds
keep_model_loaded: If True, keeps model loaded across chunks (more efficient but uses more memory)
cleanup_interval: How often to perform deep cleanup when keep_model_loaded=True
use_subprocess: If True, uses separate processes for each chunk (slower but guarantees memory release)
"""
self.speaker_id = speaker_id
self.output_base_name = output_base_name
self.device = device
self.exaggeration = exaggeration
self.cfg_weight = cfg_weight
self.temperature = temperature
self.pause_between_sentences = pause_between_sentences
self.pause_between_paragraphs = pause_between_paragraphs
self.keep_model_loaded = keep_model_loaded
self.cleanup_interval = cleanup_interval
self.use_subprocess = use_subprocess
self.chunk_counter = 0
# Initialize services
self.tts_service = TTSService(device=device)
self.speaker_service = SpeakerManagementService()
self.audio_manipulator = AudioManipulationService()
# Create output directories
self.output_dir = DIALOG_GENERATED_DIR / output_base_name
self.output_dir.mkdir(parents=True, exist_ok=True)
self.temp_dir = TTS_TEMP_OUTPUT_DIR / output_base_name
self.temp_dir.mkdir(parents=True, exist_ok=True)
# Validate speaker
self._validate_speaker()
def _validate_speaker(self):
"""Validate that the specified speaker exists."""
speaker_info = self.speaker_service.get_speaker_by_id(self.speaker_id)
if not speaker_info:
raise ValueError(f"Speaker ID '{self.speaker_id}' not found.")
if not speaker_info.sample_path:
raise ValueError(f"Speaker ID '{self.speaker_id}' has no sample path defined.")
# Store speaker info for later use
self.speaker_info = speaker_info
def _cleanup_memory(self):
"""Force memory cleanup and garbage collection."""
print("Performing memory cleanup...")
# Force garbage collection multiple times for thorough cleanup
for _ in range(3):
gc.collect()
# Clear device-specific caches
if self.device == "cuda" and torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Additional CUDA cleanup
try:
torch.cuda.reset_peak_memory_stats()
except:
pass
elif self.device == "mps" and torch.backends.mps.is_available():
if hasattr(torch.mps, "empty_cache"):
torch.mps.empty_cache()
if hasattr(torch.mps, "synchronize"):
torch.mps.synchronize()
# Try to free MPS memory more aggressively
try:
import os
# This forces MPS to release memory back to the system
if hasattr(torch.mps, "set_per_process_memory_fraction"):
current_allocated = torch.mps.current_allocated_memory() if hasattr(torch.mps, "current_allocated_memory") else 0
if current_allocated > 0:
torch.mps.empty_cache()
except:
pass
# Additional aggressive cleanup
if hasattr(torch, '_C') and hasattr(torch._C, '_cuda_clearCublasWorkspaces'):
try:
torch._C._cuda_clearCublasWorkspaces()
except:
pass
print("Memory cleanup completed.")
async def _generate_chunk_subprocess(self, chunk, segment_filename_base, speaker_sample_path):
"""
Generate a single chunk using cbx-generate.py in a subprocess.
This guarantees memory is released when the process exits.
"""
output_file = self.temp_dir / f"{segment_filename_base}.wav"
# Use cbx-generate.py for single chunk generation
cmd = [
sys.executable, "cbx-generate.py",
"--sample", str(speaker_sample_path),
"--output", str(output_file),
"--text", chunk,
"--device", self.device
]
print(f"Running subprocess: {' '.join(cmd[:4])} ... (text truncated)")
try:
result = subprocess.run(
cmd,
capture_output=True,
text=True,
timeout=300, # 5 minute timeout per chunk
cwd=Path(__file__).parent # Run from project root
)
if result.returncode != 0:
raise RuntimeError(f"Subprocess failed: {result.stderr}")
if not output_file.exists():
raise RuntimeError(f"Output file not created: {output_file}")
print(f"Subprocess completed successfully: {output_file}")
return output_file
except subprocess.TimeoutExpired:
raise RuntimeError(f"Subprocess timed out after 5 minutes")
except Exception as e:
raise RuntimeError(f"Subprocess error: {e}")
def split_text_into_chunks(self, text, max_length=300):
"""
Split text into chunks suitable for TTS processing.
This uses the same logic as the DialogProcessorService._split_text method
but adds additional paragraph handling.
"""
# Split text into paragraphs first
paragraphs = re.split(r'\n\s*\n', text)
paragraphs = [p.strip() for p in paragraphs if p.strip()]
all_chunks = []
for paragraph in paragraphs:
# Split paragraph into sentences
sentences = re.split(r'(?<=[.!?\u2026])\s+|(?<=[.!?\u2026])(?=[\"\')\]\}\u201d\u2019])|(?<=[.!?\u2026])$', paragraph.strip())
sentences = [s.strip() for s in sentences if s and s.strip()]
chunks = []
current_chunk = ""
for sentence in sentences:
if not sentence:
continue
if not current_chunk: # First sentence for this chunk
current_chunk = sentence
elif len(current_chunk) + len(sentence) + 1 <= max_length:
current_chunk += " " + sentence
else:
chunks.append(current_chunk)
current_chunk = sentence
if current_chunk: # Add the last chunk
chunks.append(current_chunk)
# Further split any chunks that are still too long
paragraph_chunks = []
for chunk in chunks:
if len(chunk) > max_length:
# Simple split by length if a sentence itself is too long
for i in range(0, len(chunk), max_length):
paragraph_chunks.append(chunk[i:i+max_length])
else:
paragraph_chunks.append(chunk)
# Add paragraph marker
if paragraph_chunks:
all_chunks.append({"type": "paragraph", "chunks": paragraph_chunks})
return all_chunks
async def generate_audiobook(self, text_file_path):
"""
Generate an audiobook from a text file.
Args:
text_file_path: Path to the text file to convert
Returns:
Path to the generated audiobook file
"""
# Read the text file
text_path = Path(text_file_path)
if not text_path.exists():
raise FileNotFoundError(f"Text file not found: {text_file_path}")
with open(text_path, 'r', encoding='utf-8') as f:
text = f.read()
print(f"Processing text file: {text_file_path}")
print(f"Text length: {len(text)} characters")
# Split text into chunks
paragraphs = self.split_text_into_chunks(text)
total_chunks = sum(len(p["chunks"]) for p in paragraphs)
print(f"Split into {len(paragraphs)} paragraphs with {total_chunks} total chunks")
# Generate audio for each chunk
segment_results = []
chunk_count = 0
# Pre-load model if keeping it loaded
if self.keep_model_loaded:
print("Pre-loading TTS model for batch processing...")
self.tts_service.load_model()
try:
for para_idx, paragraph in enumerate(paragraphs):
print(f"Processing paragraph {para_idx+1}/{len(paragraphs)}")
for chunk_idx, chunk in enumerate(paragraph["chunks"]):
chunk_count += 1
self.chunk_counter += 1
print(f" Generating audio for chunk {chunk_count}/{total_chunks}: {chunk[:50]}...")
# Generate unique filename for this chunk
segment_filename_base = f"{self.output_base_name}_p{para_idx}_c{chunk_idx}_{uuid.uuid4().hex[:8]}"
try:
# Get absolute speaker sample path
speaker_sample_path = Path(self.speaker_info.sample_path)
if not speaker_sample_path.is_absolute():
from backend.app.config import SPEAKER_DATA_BASE_DIR
speaker_sample_path = SPEAKER_DATA_BASE_DIR / speaker_sample_path
# Generate speech for this chunk
if self.use_subprocess:
# Use subprocess for guaranteed memory release
segment_output_path = await self._generate_chunk_subprocess(
chunk=chunk,
segment_filename_base=segment_filename_base,
speaker_sample_path=speaker_sample_path
)
else:
# Load model for this chunk (if not keeping loaded)
if not self.keep_model_loaded:
print("Loading TTS model...")
self.tts_service.load_model()
# Generate speech using the TTS service
segment_output_path = await self.tts_service.generate_speech(
text=chunk,
speaker_id=self.speaker_id,
speaker_sample_path=str(speaker_sample_path),
output_filename_base=segment_filename_base,
output_dir=self.temp_dir,
exaggeration=self.exaggeration,
cfg_weight=self.cfg_weight,
temperature=self.temperature
)
# Memory management strategy based on model lifecycle
if self.use_subprocess:
# No memory management needed - subprocess handles it
pass
elif self.keep_model_loaded:
# Light cleanup after each chunk
if self.chunk_counter % self.cleanup_interval == 0:
print(f"Performing periodic deep cleanup (chunk {self.chunk_counter})")
self._cleanup_memory()
else:
# Explicit memory cleanup after generation
self._cleanup_memory()
# Unload model after generation
print("Unloading TTS model...")
self.tts_service.unload_model()
# Additional memory cleanup after model unload
self._cleanup_memory()
# Add to segment results
segment_results.append({
"type": "speech",
"path": str(segment_output_path)
})
# Add pause between sentences
if chunk_idx < len(paragraph["chunks"]) - 1:
segment_results.append({
"type": "silence",
"duration": self.pause_between_sentences
})
except Exception as e:
print(f"Error generating speech for chunk: {e}")
# Ensure model is unloaded if there was an error and not using subprocess
if not self.use_subprocess:
if not self.keep_model_loaded and self.tts_service.model is not None:
print("Unloading TTS model after error...")
self.tts_service.unload_model()
# Force cleanup after error
self._cleanup_memory()
# Continue with next chunk
# Add longer pause between paragraphs
if para_idx < len(paragraphs) - 1:
segment_results.append({
"type": "silence",
"duration": self.pause_between_paragraphs
})
finally:
# Always unload model at the end if it was kept loaded
if self.keep_model_loaded and self.tts_service.model is not None:
print("Final cleanup: Unloading TTS model...")
self.tts_service.unload_model()
self._cleanup_memory()
# Concatenate all segments
print("Concatenating audio segments...")
concatenated_filename = f"{self.output_base_name}_audiobook.wav"
concatenated_path = self.output_dir / concatenated_filename
self.audio_manipulator.concatenate_audio_segments(
segment_results=segment_results,
output_concatenated_path=concatenated_path
)
# Create ZIP archive with all files
print("Creating ZIP archive...")
zip_filename = f"{self.output_base_name}_audiobook.zip"
zip_path = self.output_dir / zip_filename
# Collect all speech segment files
speech_segment_paths = [
Path(s["path"]) for s in segment_results
if s["type"] == "speech" and Path(s["path"]).exists()
]
self.audio_manipulator.create_zip_archive(
segment_file_paths=speech_segment_paths,
concatenated_audio_path=concatenated_path,
output_zip_path=zip_path
)
print(f"Audiobook generation complete!")
print(f"Audiobook file: {concatenated_path}")
print(f"ZIP archive: {zip_path}")
# Ensure model is unloaded at the end (just in case)
if self.tts_service.model is not None:
print("Final check: Unloading TTS model...")
self.tts_service.unload_model()
return concatenated_path
async def main():
parser = argparse.ArgumentParser(description="Generate an audiobook from a text file using Chatterbox TTS")
# Create a mutually exclusive group for the main operation vs listing speakers
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument("--list-speakers", action="store_true", help="List available speakers and exit")
group.add_argument("text_file", nargs="?", help="Path to the text file to convert")
# Other arguments
parser.add_argument("--speaker", "-s", help="ID of the speaker to use")
parser.add_argument("--output", "-o", help="Base name for output files (default: derived from text filename)")
parser.add_argument("--device", default="mps", choices=["mps", "cuda", "cpu"], help="Device to use for TTS (default: mps)")
parser.add_argument("--exaggeration", type=float, default=0.5, help="Controls expressiveness (0.0-1.0, default: 0.5)")
parser.add_argument("--cfg-weight", type=float, default=0.5, help="Controls alignment with speaker (0.0-1.0, default: 0.5)")
parser.add_argument("--temperature", type=float, default=0.8, help="Controls randomness (0.0-1.0, default: 0.8)")
parser.add_argument("--sentence-pause", type=float, default=0.5, help="Pause between sentences in seconds (default: 0.5)")
parser.add_argument("--paragraph-pause", type=float, default=1.0, help="Pause between paragraphs in seconds (default: 1.0)")
parser.add_argument("--keep-model-loaded", action="store_true", help="Keep model loaded between chunks (faster but uses more memory)")
parser.add_argument("--cleanup-interval", type=int, default=10, help="How often to perform deep cleanup when keeping model loaded (default: 10)")
parser.add_argument("--force-cpu-on-oom", action="store_true", help="Automatically switch to CPU if MPS/CUDA runs out of memory")
parser.add_argument("--max-chunk-length", type=int, default=300, help="Maximum chunk length for text splitting (default: 300)")
parser.add_argument("--use-subprocess", action="store_true", help="Use separate processes for each chunk (guarantees memory release but slower)")
args = parser.parse_args()
# List speakers if requested
if args.list_speakers:
speaker_service = SpeakerManagementService()
speakers = speaker_service.get_speakers()
print("Available speakers:")
for speaker in speakers:
print(f" {speaker.id}: {speaker.name}")
return
# Validate required arguments for audiobook generation
if not args.text_file:
parser.error("text_file is required when not using --list-speakers")
if not args.speaker:
parser.error("--speaker/-s is required when not using --list-speakers")
# Determine output base name if not provided
if not args.output:
text_path = Path(args.text_file)
args.output = text_path.stem
try:
# Create audiobook generator
generator = AudiobookGenerator(
speaker_id=args.speaker,
output_base_name=args.output,
device=args.device,
exaggeration=args.exaggeration,
cfg_weight=args.cfg_weight,
temperature=args.temperature,
pause_between_sentences=args.sentence_pause,
pause_between_paragraphs=args.paragraph_pause,
keep_model_loaded=args.keep_model_loaded,
cleanup_interval=args.cleanup_interval,
use_subprocess=args.use_subprocess
)
# Generate audiobook with automatic fallback
try:
await generator.generate_audiobook(args.text_file)
except (RuntimeError, torch.OutOfMemoryError) as e:
if args.force_cpu_on_oom and "out of memory" in str(e).lower() and args.device != "cpu":
print(f"\n⚠️ {args.device.upper()} out of memory: {e}")
print("🔄 Automatically switching to CPU and retrying...")
# Create new generator with CPU
generator = AudiobookGenerator(
speaker_id=args.speaker,
output_base_name=args.output,
device="cpu",
exaggeration=args.exaggeration,
cfg_weight=args.cfg_weight,
temperature=args.temperature,
pause_between_sentences=args.sentence_pause,
pause_between_paragraphs=args.paragraph_pause,
keep_model_loaded=args.keep_model_loaded,
cleanup_interval=args.cleanup_interval,
use_subprocess=args.use_subprocess
)
await generator.generate_audiobook(args.text_file)
print("✅ Successfully completed using CPU fallback!")
else:
raise
except Exception as e:
print(f"Error: {e}", file=sys.stderr)
return 1
return 0
if __name__ == "__main__":
sys.exit(asyncio.run(main()))