chatterbox-ui/chatterbox_tts.py.bak

245 lines
7.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from dataclasses import dataclass
from pathlib import Path
import librosa
import torch
import perth
import torch.nn.functional as F
from huggingface_hub import hf_hub_download
from .models.t3 import T3
from .models.s3tokenizer import S3_SR, drop_invalid_tokens
from .models.s3gen import S3GEN_SR, S3Gen
from .models.tokenizers import EnTokenizer
from .models.voice_encoder import VoiceEncoder
from .models.t3.modules.cond_enc import T3Cond
REPO_ID = "ResembleAI/chatterbox"
def punc_norm(text: str) -> str:
"""
Quick cleanup func for punctuation from LLMs or
containing chars not seen often in the dataset
"""
if len(text) == 0:
return "You need to add some text for me to talk."
# Capitalise first letter
if text[0].islower():
text = text[0].upper() + text[1:]
# Remove multiple space chars
text = " ".join(text.split())
# Replace uncommon/llm punc
punc_to_replace = [
("...", ", "),
("", ", "),
(":", ","),
(" - ", ", "),
(";", ", "),
("", "-"),
("", "-"),
(" ,", ","),
("", "\""),
("", "\""),
("", "'"),
("", "'"),
]
for old_char_sequence, new_char in punc_to_replace:
text = text.replace(old_char_sequence, new_char)
# Add full stop if no ending punc
text = text.rstrip(" ")
sentence_enders = {".", "!", "?", "-", ","}
if not any(text.endswith(p) for p in sentence_enders):
text += "."
return text
@dataclass
class Conditionals:
"""
Conditionals for T3 and S3Gen
- T3 conditionals:
- speaker_emb
- clap_emb
- cond_prompt_speech_tokens
- cond_prompt_speech_emb
- emotion_adv
- S3Gen conditionals:
- prompt_token
- prompt_token_len
- prompt_feat
- prompt_feat_len
- embedding
"""
t3: T3Cond
gen: dict
def to(self, device):
self.t3 = self.t3.to(device=device)
for k, v in self.gen.items():
if torch.is_tensor(v):
self.gen[k] = v.to(device=device)
return self
def save(self, fpath: Path):
arg_dict = dict(
t3=self.t3.__dict__,
gen=self.gen
)
torch.save(arg_dict, fpath)
@classmethod
def load(cls, fpath, map_location="cpu"):
kwargs = torch.load(fpath, map_location=map_location, weights_only=True)
return cls(T3Cond(**kwargs['t3']), kwargs['gen'])
class ChatterboxTTS:
ENC_COND_LEN = 6 * S3_SR
DEC_COND_LEN = 10 * S3GEN_SR
def __init__(
self,
t3: T3,
s3gen: S3Gen,
ve: VoiceEncoder,
tokenizer: EnTokenizer,
device: str,
conds: Conditionals = None,
):
self.sr = S3GEN_SR # sample rate of synthesized audio
self.t3 = t3
self.s3gen = s3gen
self.ve = ve
self.tokenizer = tokenizer
self.device = device
self.conds = conds
self.watermarker = perth.PerthImplicitWatermarker()
@classmethod
def from_local(cls, ckpt_dir, device) -> 'ChatterboxTTS':
ckpt_dir = Path(ckpt_dir)
ve = VoiceEncoder()
ve.load_state_dict(
torch.load(ckpt_dir / "ve.pt")
)
ve.to(device).eval()
t3 = T3()
t3_state = torch.load(ckpt_dir / "t3_cfg.pt")
if "model" in t3_state.keys():
t3_state = t3_state["model"][0]
t3.load_state_dict(t3_state)
t3.to(device).eval()
s3gen = S3Gen()
s3gen.load_state_dict(
torch.load(ckpt_dir / "s3gen.pt")
)
s3gen.to(device).eval()
tokenizer = EnTokenizer(
str(ckpt_dir / "tokenizer.json")
)
conds = None
if (builtin_voice := ckpt_dir / "conds.pt").exists():
conds = Conditionals.load(builtin_voice).to(device)
return cls(t3, s3gen, ve, tokenizer, device, conds=conds)
@classmethod
def from_pretrained(cls, device) -> 'ChatterboxTTS':
for fpath in ["ve.pt", "t3_cfg.pt", "s3gen.pt", "tokenizer.json", "conds.pt"]:
local_path = hf_hub_download(repo_id=REPO_ID, filename=fpath)
return cls.from_local(Path(local_path).parent, device)
def prepare_conditionals(self, wav_fpath, exaggeration=0.5):
## Load reference wav
s3gen_ref_wav, _sr = librosa.load(wav_fpath, sr=S3GEN_SR)
ref_16k_wav = librosa.resample(s3gen_ref_wav, orig_sr=S3GEN_SR, target_sr=S3_SR)
s3gen_ref_wav = s3gen_ref_wav[:self.DEC_COND_LEN]
s3gen_ref_dict = self.s3gen.embed_ref(s3gen_ref_wav, S3GEN_SR, device=self.device)
# Speech cond prompt tokens
if plen := self.t3.hp.speech_cond_prompt_len:
s3_tokzr = self.s3gen.tokenizer
t3_cond_prompt_tokens, _ = s3_tokzr.forward([ref_16k_wav[:self.ENC_COND_LEN]], max_len=plen)
t3_cond_prompt_tokens = torch.atleast_2d(t3_cond_prompt_tokens).to(self.device)
# Voice-encoder speaker embedding
ve_embed = torch.from_numpy(self.ve.embeds_from_wavs([ref_16k_wav], sample_rate=S3_SR))
ve_embed = ve_embed.mean(axis=0, keepdim=True).to(self.device)
t3_cond = T3Cond(
speaker_emb=ve_embed,
cond_prompt_speech_tokens=t3_cond_prompt_tokens,
emotion_adv=exaggeration * torch.ones(1, 1, 1),
).to(device=self.device)
self.conds = Conditionals(t3_cond, s3gen_ref_dict)
def generate(
self,
text,
audio_prompt_path=None,
exaggeration=0.5,
cfg_weight=0.5,
temperature=0.8,
):
if audio_prompt_path:
self.prepare_conditionals(audio_prompt_path, exaggeration=exaggeration)
else:
assert self.conds is not None, "Please `prepare_conditionals` first or specify `audio_prompt_path`"
# Update exaggeration if needed
if exaggeration != self.conds.t3.emotion_adv[0, 0, 0]:
_cond: T3Cond = self.conds.t3
self.conds.t3 = T3Cond(
speaker_emb=_cond.speaker_emb,
cond_prompt_speech_tokens=_cond.cond_prompt_speech_tokens,
emotion_adv=exaggeration * torch.ones(1, 1, 1),
).to(device=self.device)
# Norm and tokenize text
text = punc_norm(text)
text_tokens = self.tokenizer.text_to_tokens(text).to(self.device)
text_tokens = torch.cat([text_tokens, text_tokens], dim=0) # Need two seqs for CFG
sot = self.t3.hp.start_text_token
eot = self.t3.hp.stop_text_token
text_tokens = F.pad(text_tokens, (1, 0), value=sot)
text_tokens = F.pad(text_tokens, (0, 1), value=eot)
with torch.inference_mode():
speech_tokens = self.t3.inference(
t3_cond=self.conds.t3,
text_tokens=text_tokens,
max_new_tokens=1000, # TODO: use the value in config
temperature=temperature,
cfg_weight=cfg_weight,
)
# Extract only the conditional batch.
speech_tokens = speech_tokens[0]
# TODO: output becomes 1D
speech_tokens = drop_invalid_tokens(speech_tokens)
speech_tokens = speech_tokens.to(self.device)
wav, _ = self.s3gen.inference(
speech_tokens=speech_tokens,
ref_dict=self.conds.gen,
)
wav = wav.squeeze(0).detach().cpu().numpy()
watermarked_wav = self.watermarker.apply_watermark(wav, sample_rate=self.sr)
return torch.from_numpy(watermarked_wav).unsqueeze(0)