208 lines
8.6 KiB
Python
208 lines
8.6 KiB
Python
import torch
|
|
import torchaudio
|
|
from typing import Optional
|
|
from chatterbox.tts import ChatterboxTTS
|
|
from pathlib import Path
|
|
import gc # Garbage collector for memory management
|
|
import os
|
|
from contextlib import contextmanager
|
|
|
|
# Import configuration
|
|
from app.config import TTS_TEMP_OUTPUT_DIR, SPEAKER_SAMPLES_DIR
|
|
|
|
# Use configuration for TTS output directory
|
|
TTS_OUTPUT_DIR = TTS_TEMP_OUTPUT_DIR
|
|
|
|
def safe_load_chatterbox_tts(device):
|
|
"""
|
|
Safely load ChatterboxTTS model with device mapping to handle CUDA->MPS/CPU conversion.
|
|
This patches torch.load temporarily to map CUDA tensors to the appropriate device.
|
|
"""
|
|
@contextmanager
|
|
def patch_torch_load(target_device):
|
|
original_load = torch.load
|
|
|
|
def patched_load(*args, **kwargs):
|
|
# Add map_location to handle device mapping
|
|
if 'map_location' not in kwargs:
|
|
if target_device == "mps" and torch.backends.mps.is_available():
|
|
kwargs['map_location'] = torch.device('mps')
|
|
else:
|
|
kwargs['map_location'] = torch.device('cpu')
|
|
return original_load(*args, **kwargs)
|
|
|
|
torch.load = patched_load
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.load = original_load
|
|
|
|
with patch_torch_load(device):
|
|
return ChatterboxTTS.from_pretrained(device=device)
|
|
|
|
class TTSService:
|
|
_instance = None
|
|
_initialized = False
|
|
|
|
def __new__(cls, device: str = "mps"):
|
|
"""Singleton pattern - ensures only one instance exists."""
|
|
if cls._instance is None:
|
|
cls._instance = super(TTSService, cls).__new__(cls)
|
|
return cls._instance
|
|
|
|
def __init__(self, device: str = "mps"): # Default to MPS for Macs, can be "cpu" or "cuda"
|
|
# Only initialize once to prevent resetting the model
|
|
if not self._initialized:
|
|
self.device = device
|
|
self.model = None
|
|
self._ensure_output_dir_exists()
|
|
TTSService._initialized = True
|
|
|
|
def _ensure_output_dir_exists(self):
|
|
"""Ensures the TTS output directory exists."""
|
|
TTS_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
|
|
|
def load_model(self):
|
|
"""Loads the ChatterboxTTS model."""
|
|
if self.model is None:
|
|
print(f"Loading ChatterboxTTS model to device: {self.device}...")
|
|
try:
|
|
self.model = safe_load_chatterbox_tts(self.device)
|
|
print("ChatterboxTTS model loaded successfully.")
|
|
except Exception as e:
|
|
print(f"Error loading ChatterboxTTS model: {e}")
|
|
# Potentially raise an exception or handle appropriately
|
|
raise
|
|
else:
|
|
print("[Singleton] ChatterboxTTS model already loaded.")
|
|
|
|
def unload_model(self):
|
|
"""Unloads the model and clears memory."""
|
|
if self.model is not None:
|
|
print("[Singleton] Unloading ChatterboxTTS model and clearing cache...")
|
|
del self.model
|
|
self.model = None
|
|
if self.device == "cuda":
|
|
torch.cuda.empty_cache()
|
|
elif self.device == "mps":
|
|
if hasattr(torch.mps, "empty_cache"): # Check if empty_cache is available for MPS
|
|
torch.mps.empty_cache()
|
|
gc.collect() # Explicitly run garbage collection
|
|
print("[Singleton] Model unloaded and memory cleared.")
|
|
else:
|
|
print("[Singleton] Model was not loaded, nothing to unload.")
|
|
|
|
async def generate_speech(
|
|
self,
|
|
text: str,
|
|
speaker_sample_path: str, # Absolute path to the speaker's audio sample
|
|
output_filename_base: str, # e.g., "dialog_line_1_spk_X_chunk_0"
|
|
speaker_id: Optional[str] = None, # Optional, mainly for logging if needed, filename base is primary
|
|
output_dir: Optional[Path] = None, # Optional, defaults to TTS_OUTPUT_DIR from this module
|
|
exaggeration: float = 0.5, # Default from Gradio
|
|
cfg_weight: float = 0.5, # Default from Gradio
|
|
temperature: float = 0.8, # Default from Gradio
|
|
) -> Path:
|
|
"""
|
|
Generates speech from text using the loaded TTS model and a speaker sample.
|
|
Saves the output to a .wav file.
|
|
"""
|
|
if self.model is None:
|
|
raise RuntimeError("TTS model is not loaded. Model should be loaded at application startup.")
|
|
|
|
# Ensure speaker_sample_path is valid
|
|
speaker_sample_p = Path(speaker_sample_path)
|
|
if not speaker_sample_p.exists() or not speaker_sample_p.is_file():
|
|
raise FileNotFoundError(f"Speaker sample audio file not found: {speaker_sample_path}")
|
|
|
|
target_output_dir = output_dir if output_dir is not None else TTS_OUTPUT_DIR
|
|
target_output_dir.mkdir(parents=True, exist_ok=True)
|
|
# output_filename_base from DialogProcessorService is expected to be comprehensive (e.g., includes speaker_id, segment info)
|
|
output_file_path = target_output_dir / f"{output_filename_base}.wav"
|
|
|
|
print(f"Generating audio for text: \"{text[:50]}...\" with speaker sample: {speaker_sample_path}")
|
|
try:
|
|
with torch.no_grad(): # Important for inference
|
|
wav = self.model.generate(
|
|
text=text,
|
|
audio_prompt_path=str(speaker_sample_p), # Must be a string path
|
|
exaggeration=exaggeration,
|
|
cfg_weight=cfg_weight,
|
|
temperature=temperature,
|
|
)
|
|
|
|
torchaudio.save(str(output_file_path), wav, self.model.sr)
|
|
print(f"Audio saved to: {output_file_path}")
|
|
return output_file_path
|
|
except Exception as e:
|
|
print(f"Error during TTS generation or saving: {e}")
|
|
raise
|
|
finally:
|
|
# For now, we keep it loaded. Memory management might need refinement.
|
|
pass
|
|
|
|
# Global singleton instance access
|
|
_global_tts_service = None
|
|
|
|
def get_global_tts_service(device: str = "mps") -> TTSService:
|
|
"""Get the global singleton TTS service instance."""
|
|
global _global_tts_service
|
|
if _global_tts_service is None:
|
|
_global_tts_service = TTSService(device=device)
|
|
return _global_tts_service
|
|
|
|
# Example usage (for testing, not part of the service itself)
|
|
if __name__ == "__main__":
|
|
async def main_test():
|
|
tts_service = get_global_tts_service(device="mps")
|
|
try:
|
|
tts_service.load_model()
|
|
|
|
dummy_speaker_root = SPEAKER_SAMPLES_DIR
|
|
dummy_speaker_root.mkdir(parents=True, exist_ok=True)
|
|
dummy_sample_file = dummy_speaker_root / "dummy_speaker_test.wav"
|
|
import os # Added for os.remove
|
|
# Always try to remove an existing dummy file to ensure a fresh one is created
|
|
if dummy_sample_file.exists():
|
|
try:
|
|
os.remove(dummy_sample_file)
|
|
print(f"Removed existing dummy sample: {dummy_sample_file}")
|
|
except OSError as e:
|
|
print(f"Error removing existing dummy sample {dummy_sample_file}: {e}")
|
|
# Proceeding, but torchaudio.save might fail or overwrite
|
|
|
|
print(f"Creating new dummy speaker sample: {dummy_sample_file}")
|
|
# Create a minimal, silent WAV file for testing
|
|
sample_rate = 22050
|
|
duration = 1 # seconds
|
|
num_channels = 1
|
|
num_frames = sample_rate * duration
|
|
audio_data = torch.zeros((num_channels, num_frames))
|
|
try:
|
|
torchaudio.save(str(dummy_sample_file), audio_data, sample_rate)
|
|
print(f"Dummy sample created successfully: {dummy_sample_file}")
|
|
except Exception as save_e:
|
|
print(f"Could not create dummy sample: {save_e}")
|
|
# If creation fails, the subsequent generation test will likely also fail or be skipped.
|
|
|
|
|
|
if dummy_sample_file.exists():
|
|
output_path = await tts_service.generate_speech(
|
|
text="Hello, this is a test of the Text-to-Speech service.",
|
|
speaker_id="test_speaker",
|
|
speaker_sample_path=str(dummy_sample_file),
|
|
output_filename_base="test_generation"
|
|
)
|
|
print(f"Test generation output: {output_path}")
|
|
else:
|
|
print(f"Skipping generation test as dummy sample {dummy_sample_file} not found.")
|
|
|
|
except Exception as e:
|
|
import traceback
|
|
print(f"Error during TTS generation or saving:")
|
|
traceback.print_exc()
|
|
finally:
|
|
tts_service.unload_model()
|
|
|
|
import asyncio
|
|
asyncio.run(main_test()) |